JOURNAL OF APPROXIMATION THEORY 8, 19-45 (1973)

Spline Approximation by Quasiinterpolants*
C. DE BOOr
Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706
AND

G. J Fix

Institute for Fluid Dynamics and Applied Marhematics, University of Maryland, College Park,
Maryland 20742
Communicated by Oved Shisha

Received 29, 1971

DEDICATED TO PROFESSOR 1. J. SCHOENBERG ON THE OCCASION
OF HIS 70TH BIRTHDAY

1. INTRODUCTION

Let £ be a region in R", 7 a rectangular partition of R, and S,* (k = 1)
the corresponding spline space of degree & — 1. In this paper we shall
explicitly construct for each function fe CH{) a spline F,fe S, % which
we call the quasiinterpolant of f, having the following properties:

(1) F.fis local in the sense that its value at a point x depends only on
the values of f'in a uniformly small neighborhood of x.

(i) F, reproduces polynomials: F,(x¥) = x» for |y | < k.
(ii)) Ff—f= C(n|").
Moreover, our quasiinterpolant has the rather simple form

F.f(x) = Z Z w; D (1) N; (), (1.1)
Jojagek
where N;; is the n-dimensional B-spline, +; is an arbitrary point in the
support of N; ;. , and the weights w; , are given by (2.6) for n == 1 and by (4.3)
forn > 1.
The literature on direct constructions of spline approximations like (1.1)

* This work was supported in part by the Office of Naval Research and also by the
National Science Foundation.
! Standard multiindex notation [1, p. 1] will be used in this paper.
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appears to be the following. In [3] Birkhoft has defined a scheme of spline
approximation by moments (n -. 1) of the form

P.f = plx)+ ) : | n',;(r)f(""”‘)(r)dt( G(x, x)). (1.2)

where p is a polynomial of degree 2m - 1 and G(x, y) is a suitable Green’s
function. In the Appendix, we shall show that (1.1) in one dimension and (1.2)
are in fact equivalent, and, hence, our quasiinterpolant provides an algebraic
simplification of Birkhoff"s scheme 1n this case. Using the Fourier transform
Babuska [2], Strang and Fix [8, 13] have constructed approximations
analogous to (1.1) for uniform meshes. Finally, in [4] de Boor proved the
existence of projectors like F, in (1.1). This work was subsequently generalized
to n dimensions by Schultz [12] through the use of tensor products.

We note that it is straightforward to extend our construction to Chebyshev
splines.

2. THE QUASHNTERPOLANT

Let & be a positive integer. We say that 7 -= {x;};__, Is a k-extended
partition for the open (finite or infinite) interval / == (a, b) provided
() x; " X;pp.alld
(i) lim, _, x;, = a lim,_, x; == h.
(iii) if o, is the frequency with which the number x -: x, appears
among the x;'s, then d, =2 k, all /.

With 7 a k-extended partition for (a., b), let C!" " denote the linear space
of all functions defined on (a, b) with the following properties:

(i) fe C¥ D(x;.x.,),all
(ii) foralliand all ¥ << k, f¢(x; ), f'7(x,-+) exist (and are finite); and
(iii) for all i, f(x;,—) = f(x; i), all ¥ <k — d;. The following
agreements will be convenient: If the function f has a jump discontinuity at
x = £, then £(&) stands for either f(£+4) or f(£ ). Further, the statement,

&) = glé.

stands for the two statements
fE+) —~gé+) and  f(E—~) = g(é—).

We denote by S,* the linear subspace of C*"! consisting of all polynomial
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splines on 7 of order k (or, degree << k). Specifically, fe C*V is in S, * if and
only if

f9x) =0, forall x¢m.

According to Curry and Schoenberg [6], the set of normalized B-splines on =,

N X)) = (= X)) gilxs e, XiipiX), alt/, (2.1
with
RPN I
gulsix) = (s — X)) = 0, ¢y (2.2)

forms a basis for S_* in the following sense. Every f'€ S,.* can be written in the
form

for exactly one biinfinite sequence (a,( f)) of coeflicients. Here, the biinfinite
sum is to be formed pointwise, i.e.,

(Zaf(fw,,,..) ) = Y al(HN).  all xe@b).  (23)

/ i

The right side of (2.3) is well defined since no more than & of the N, , are not
zero at any particular x.
For fe C*V. we define an approximation F, fto fin S_* by

Fof =Y (NN Nos (2.4)

where. for each j, A; is the linear functional given by the rule

Nf =Y wi S, (2.5)
ek
with
Wy = (=TS e - D ek

(2.6)
‘/fj(-\') == (Xjg = X) (X — X,

and 7; some point in (a, b). Should 7; be one of the points of =, then 7, in (2.5)
is to be replaced by 7,7 or by 7,—. In the few cases where it matters which
choice is taken, we will say so.

The motivation for this somewhat complicated definition is twofold. For
one, F, can be shown to reproduce polynomials, ie., F,p = p, for all
polynomials p of degree <C k. Also, if, in particular, 7; € (x; , x;,;), all j, then
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F_fis a local approximation to f'in the sense that F, f on (x;, x;.;) depends
only on the behavior of fon (x,. ;1 , x;,). This is due to the fact that N; ; has
its support in (x;, x;,1), all j. These two facts are combined in Section 3 to

show that, for x € (x; , x;,1) and fe C*-1,
(== F 000 < K — X0 ol f U0 xe - Xiae),
2.7)

with K an absolute constant. in addition, one obtains corresponding estimates
for the degree of approximation to £ by (F,f)", r < k.

LEMMA 2.1.  Let A; be given by (2.5) and (2.6). If x is anv point and p is
a positive integer no bigger than k, then

A= X0 e ;l/i - p; =D, (28)

Proof. We have

(kﬁ l)' { — k—np

= X D @) (s - IR = )]

rl

k-1
Y BN (3 — = p =

r=p—1

Y = T (e 0!

s==0
- (=n7? Z W@ () ) ys!

- (= l)?ﬁ—«l (/é_p—vl)(x)‘

since """ is a polynomial of degree k — p.
COROLLARY. Under the same assumptions,

)\j(‘ Y MRL ])p—l (-~ 1)(\)(7'1 . \)u (2.9)

o (k- 1)'

Proof. 1f 7; < x—, then both sides of (2.9) are trivially zero; hence, (2.9)
holds in this case. If 7, > x-}-, then

N — XV = A — 0

and (2.9) follows from the lemma.
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THeorEM 2.1, Let A; be given by (2.5) and (2.6). If

X, ol O (2.10)
then
AN o= 8. all i.
Proof. By the corollary to Lemma 2.1,
A x) - l/‘,i'f"(xﬁ (2.11)
with

d 1) = o - X))

Further,

gi(s; x) = (s — X))+ (— D gulx: 5):
hence, from (2.1) and (2.11),
AN = (X5 — X = DF A g5 X ey Xiup)
(2.12)
= (X; — X)(— 1) 1/1;;’{(-\'[ veees Njap ).

Since ¢; vanishes at x,_; ..., X;_,_; , and ¢, vanishes for x > 7, , it follows,
with (2.10), that

f(x,) = 0, forall r > j

Therefore, for 7 = j,

zl‘j.(xi yeees x?‘—rl.) - 07
or, with (2.12),
AN =0, for i > j

If 7 < j, then ;7 agrees with i; at x; ..., x,.; ; since ¢; is a polynomial of
degree << k, we. therefore, have

‘/}.if(xf yeees Xiip) = ‘/’J‘(Xf e X)) = 0,
or, with (2.12),
AN =0, for 7 < j.

Finally, if / == j, then ;= agrees with the kth degree polynomial
PxX) = 000050 — X)) (X5 — X5)
at x; ,..., X, ; therefore,

Pt (X s Xiar) = pPOY = (= D*/(X; 50 — X))
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or with (2.12)
/\jN/'.I.' - Ig fOI' = j,
proving the theorem.

Remark. The fact that the set of normalized B-splines (2.1) is a basis for
S,* is a rather easy consequence of this theorem, as is the statement that the
set

Ni,/; ERRRS Nv‘-f.r',l.' -

1s linearly independent, considered as a set of functions on
['Yiiﬁ—l N . l]'
COROLLARY 1. [If for ali j, =, satisfies (2.10), then F. as defined by
(2.4)-(2.6) is a linear projector with range S_.".

Proof. F, is, off hand, a linear map on C}*" with range in S,*. Hence,
it suffices to show that

F.f={ forall /eS8, (2.13)
But, if f'€.S,%, then by [6]
f= Z ai(f) Ny,

i

for certain coeflicients a,( f). Since each A; is a local linear functional, it
follows that

/\J./{ i )‘7' (Z a;(f) /Vi./r) == Z (lf(f)()\sz,k)»

Hence, by Theorem 2.1,

/\J'f‘ - aj(f)a ll]lj, (214)
proving (2.13).
We mention a few obvious but noteworthy consequences of the preceding

results.
Since

(- — x)kvl» ES‘”{A" for 1 < 4 < k,

we get, with (2.8), from the preceding corollary that

k- !
(5 = ) = Ei - ‘1’;—, Y (=D ) N ads), (2.15)

4
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which is Marsden’s identity [9] in one of its many equivalent forms. But since
(2.8) holds for arbitrary =; , we then get from (2.15) the following.

CorOLLARY 2. If F, is given by (2.4)~(2.6), then
F.p = p, Jfor all polynomials p of degree < k. (2.16)

Again, since g,(-; x;) € §.* for any j, Corollary | to Theorem 2.1 and (2.9)
imply that
(s = x)Th = Y o "(x) Ny ls), (2.17)

7

which can, of course, also be derived directly from (2.15).

Note further that (2.14) offers a convenient way to calculate the coordinate
vector (a,(f)) for f e S,* with respect to the normalized B-spline basis, once the
numbers f ) (z)), r < k, all j, are known. In practice, we would make use of
the fact that the restriction (2.10) allows several of the 7,’s to coincide making
it possible to calculate k of the coefficients a,(f) from the k pieces of data
fO(r;). r < k. Incidentally, if 7, = x; for some i, then only f")(7,), r <C k — 1,

;g == P(7;) of fE=D(+)) in (2.5) vanishes.

3. THE QUASIINTERPOLANT ON A FINITE PARTITION

Since the quasiinterpolant F, f to f provides a local approximation, it is
readily adapted to the practically important problem of constructing
approximations by polynomial splines on a finite partition.

Let k be a positive integer, and let = == {x,}) be a k-extended partition
for the finite interval {a, b]. Specifically,

4 = Xy < Xy TL X =1 0 v Xy < Xy = b, (3.1)

with coincidences among the x;’s restricted to no more than k consecutive of
them, i.e.,
X < Xy all j.

If §.% denotes the linear space of all polynomial splines of order & on =, then
INjplj=—k+ 1. ,N—1,

is a basis for S, *. Here we have augmented = by additional, rather arbitrary
points

X_ gy S L xy < a, b < xyyy < < XNik—1 - (3.2)
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For fe C!*7"', we define F, f, as before, by

N1
Fof = % (NN (

Jez—lot 1

(oS
[
—

with A; given by (2.5)+(2.6) and 7, satisfying (2.10) as well as the additional
restriction that
7; € [a, bl all ;. (3.4)

Note that this additional restriction is compatible with (2.10).
Typically, we might choose

at, i k2o 0.
T X w00 k2 N (3.5)
{b N -t k2,

where
Xegre ™ (X b X500)2.

With this choice, we get, for 0 < j + k/2 = N,

/

‘,/-(-r\‘_irl/Q)? k- 1
Lp M, k- 2.
- J(Niiae) — %(Axﬂ1)2«){(2)(-\"_/‘-%3,’2)» k== 3,

?f(-\'jw'—z) - %A2x1+1f<1)(»\'j+z) = 44,0 A-"jezf(:'(xj 2). ko 4,

\

to give some explicit formulas.
It readily follows from Theorem 2.1 that the map F, is a linear projector
with range S.*. In preparation for later sections. we now consider the error

¢~ Ff
For simplicity, we assume that 7 is a strict partition, i.e.,
X; < Xjaq s all 7.
We also assume that fe C*V[q, ). For x c [a. b]. let

(T )s) = Y £ - 0!
Tk

and

Then, T,f is a polynomial of degree <C k; hence, as F, reproduces such
polynomials (see Corollary 2 to Theorem 2.1) we get

FAT.f) = T.f.
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On the other hand,
(T,.)HN(x) = f"x), forall r <k;
therefore,
en(x) = fUx) = (Ff)"N(x) = —(F,R)"M(x), r <k,

or
) = =T AR N, r <k (3.6)

Hence, estimating ¢!”(x) amounts to bounding the k terms
[(SR:) Ny,

for which N; ,{(x) is nonzero. This can be done as follows.
Since R{(x) = 0 for p < k, expansion of R\” in a partial Taylor series
around x gives
Rir)(y) . Rilcfl)(g)(y . x)kfl—r/(k ] — I')'
= (O — SNy = I — 1 - )

for some ¢ = £(v, r) between y and x. With this, the definition (2.5)-(2.6) of
A; implies

MR, == Y w, [ VE) — FEPNr — ) — 1 — p)

ook

Therefore, with

AZ.;(,\‘) = | wk-l*p.j('rj - «‘C)DNJ('.ri)c(x)VP!, 3.7)
we get
R NI < w(f 17— x ) Y 40,00, (3.8)
o<k

where w(g, ) denotes the modulus of continuity of g.
It remains to find suitable bounds for the quantities 4] ,(x). With (2.6),
we have, more explicitly,

AL (x) = ;)'—, L () — %) NIk — DY,
where

Pi(X) = (X551 — X) = (Xjapmr — X).
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Since
0 =0 N, ux) <0 1,

this gives at once

A?,(\) /\/,(./.1/)/\ ’. (39)
where K, is some constant depending only on p and where

4, = Jmax (v, - X, (3.10)

il

For r =~ 0, a more careful analysis is required to establish in which cases
A; {x) can be bounded independently of the local mesh ratio.
First, using the facts that

(r) (r)
N 3 Ny (x) 4

N}(/)xl (\,) o (}“ o l) LA [ 1( ) Vil
( Nin 1 A N NG ! !

and that 6 ~_ N, (x) <. |, one can prove by induction the tollowing.

Lemma 3.1, For r <k, there exist a constant C = C(k.r) and an integer
n == plk, r. j, x) such that

with
XX, X Nl X (3.11)
Fuirther,
KOV Y § TS
t'p o]
where the sum is taken over all subsets /, of x; ;.....x, ., of cardinality
k I - p. Hence, with C; = C\(k, r. p) some constant.
A7 (x 17y X (3.12
J( ) (Ynyl T n)rz;nlrll )
Since both 7; and x are in [x; . x,...], this gives
Apx) = Co ), (3.13)

where the constant C; ; may depend on the local mesh ratio.
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Lemma 3.2, If2r <2 k., and
X, 7 L Xy (3.14)

then the constant C; ; in (3.13) can be chosen independently of 7; .

Proof. By (3.12), the task of bounding A ,(x) amounts to bounding p!
terms of the form

(H (m; — U))/(—\.n;/.--— P ) (3.15)

oed /

where

o times
PR

Jo=1,U{x,..., x.

We claim that at least & — r elements of J lie between x, and x,,.,_, . Indeed,
since at least k —- r of {x;,;,..., X;.;q} lie in {x, . x,4_]. and I, contains
k - 1 — pofthe A — 1 points {x;,1 ,.... X;,,.1}. it follows that

#el | x, <x, < Xyt skl —ptk—r—(k—1)=k—r—p,

where. by (3.11), the p x's all lie in [x, . x,, ;. ]. [t follows that at least k — r
of the k — 1 factors.

cTr,— ol celd,

are less than or equal to x,, .,_, — x,, . Therefore, if r - &k — r, then all terms
in the denominator of (3.15) can be cancelled against suitable terms in the
numerator without increasing the value of the expression, which proves the
lemma.

It remains to discuss the condition (3.14) which should be satisfied if we
are to get bounds (for 2r = k) which do not depend on =. Since Lemma 3.1
gives no information about # beyond the condition (3.11), we must choose 7,
so as to satisfy (3.14) for all # satisfying (3.11). Hence, with

m = 1k/2].
we need to pick 7; so that
Xn & Tj S Xk s

for all n such that

- — - -
xj T Xy e X & Xpgkm m Xjogo

if we want (3.14) to hold for all » < k/2. The choice.

< <
Xitm = T = Xjjp-m >
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will accomplish this for all x € [x; , x,,,]. But note that, for certainj, [x; , x;..]
will not lie entirely in [a, b] = [x,, xy]. As we are only concerned with
x € [x,, xx], it is, therefore. sufficient to choose each 7, subject to

XminGeek, V—ktm 5= Ti % Xmax(G,0)+k—m (3.16)

to have (3.11) hold for all x € [a, b]. Specifically, the choice (3.5) satisfies
(3.16).
The preceding discussion proves the following.

THEOREM 2.1. If fe C%*V[a, b], and F, is given by (3.1), (2.5), (2.6), and
(3.16), then

L7 (E )7 s Kol fO0 ) fmftr ok,

where, for r << k/2, K, is independent of  (or f), while, for r > k/2, K,
depends on the local mesh ratio

M, = ‘1.1_1;4[211 (N = X)X — X))

Here

= max (= X),

g 7 max 1 gly)i.

4. THE MULTIVARIATE QUASHNTERPOLANT

In this section we extend the quasiinterpolant construction to include
functions of n variables. We use boldface type to denote points in R”,

X = (X1 5.00r Xp)
with x; the ith component of x. For each v = 1,..., n, let
7, = {Xpuez

be a k-extended partition of R and set w — 7y % -~ 7, . Thus. as
j = (Jy »...» ju) varies over Z7, =r can be characterized as the set of nodes x; with

Xj == (xj].l geres Xi“,n).

For je Z” and x € R" we let

NiX) = Ny olX)) - Ny k(X)) 4.1)
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the B-spline of degree k — | (in each variable) which has the n-dimensional
interval or cube

Xy Xyp)
as its support. Here we have used the abbreviation
1=(1.. 1.
Correspondingly, we define the linear functional A, by the rule

M= Y oD, (4.2)

O=Zay, I

where =, is some point in the support of N, ; and (see (2.5), (2.6))

Wia = ﬂ Wiayr
pazl
Wi g, = (*1)]‘4717'1" D"717"“1/1;,,_,‘(1;,1,)/(/\' — 1Y, (4.3)

k—1
Do) = [T (s = 1)
i=1

n

Hence, 7\3 is (an extension of) the tensor product (), ; A;, with

Xj.vg - Z wi,f&,lf(Dqg)('Tivl")'

<k

Therefore, by Theorem 2.1,

RS T

XiNj,h - 8i,i 0 if i J

This shows that the rule

F.f=Y (A\f) Ny, (4.4)

jez®

(with the sum taken pointwise as in the univariate case) defines a linear
projector F_ on the linear space of functions f in R® which have k — 1
continuous derivatives in each variable.2 The map F, enjoys all the properties
possessed by one-dimensional quasiinterpolants; it is projective into its
range S *; it is local; it approximates to the correct order. However, it has the

* We shall denote this class of functions by C*!, or C*1(Q) if the dependence on the
region £ is important.
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disadvantage of being defined only on W»*~1 while in practice it is important
to work with the larger Sobolev space W+ '3
By simply omitting in (4.2) all terms (D% )(t;) with a k, we obtain
the map
Fof =3 (AS) Ny (4.52)

with
NS =Y o D)) (4.5b)

al

F, maps all of W:™ n C*~'into S,* but fails to be a linear projector, although
it is local and, more importantly, F_f approximates f to the correct order.
This latter point will be verified systematically in Section 5; however, it seems
appropriate to give an intuitive justification here. The key lies in the nature
of the multivariate Taylor expansion

Tof(y) = Y (DY)UxNy — x)%al.

a; -k

The error estimate in Section 3 centered around the ability of F, to reproduce
this Taylor polynomial which, in turn, rcquires that F., reproduce the
monomials

Since S.* contains the larger set of monomials
v o, < k. all v,
and F is a linear projector with S,* as its range, it follows that F, reproduces

B > k. Hence, since A; is obtained from A, by omitting all terms D¥f
with { B | = k, then

M = M.
Therefore, finally, F, f —= F,f — f. This proves the following lemma.
LEmMA 4.1, With F_ and F, defined by (4.4) and (4.5), respectively,
F.p=F,p=p,

Jor all polynomials p of total degree << k.

3 We shall denote by W..™ the class of functions f whose derivatives up to order m are
bounded; i.e., supg | D*f(x)! <= oo for "o = @ 4 o koo, < m
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If fis defined only in a region £ C R~, then it is possible to define F, f
using only the values of fand its derivatives in £. Clearly this will be the case
if T; is chosen to be any point in

£200(X5, Xy

However, further conditiens are needed on the choice of the evaluation
points =; to prevent unnecessary dependence of the error estimates on mesh
ratios (see Section 3). Accordingly, we shall assume in the sequel that the <;’s
have been centered in the support of N, ;. , except near 982, in the following
manner. With

k' = [k/2],
put
Ty = Xy (46)

with j* chosen so that

lj+k1—j ] <|j+k1—m| forallm with x,eQ. (4.7)

5. ERROR ESTIMATES

In this section we shall work with a partition = of R* consisting of distinct
nodes x;, j € Z". Having established error estimates for such partitions and
having determined when these estimates depend on mesh ratios, we can then
let nodal points coalesce to obtain the k-extended partition setting.

Let 2 be a region in R*. For each fe WX () n C*X), we define F, f
by (4.5a) and (4.5b) with the evaluation points =; being chosen according to
(4.6) and (4.7). Our first result is a local estimate of the error in the interval

Ci == (X5, X2 .1

in terms of values of fin

Cie = (Xi_gnyn > X000 (5.2)
THEOREM 5.1.  Let (X;, x;49) N 82 == &, and let fe C*YQ2 N C; ). Then
for|s| <k
max | De(x)| < Kdi™ "y 1(f; 455 Cpp), (5.3)
Xe ]
where
4; = maXnA;,, 5 A;,, = [ Xpe — Xi—Ge-D1w | (5.4)

1y

640/8/1-4
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and
w ([ 4y Cip) - max, w(Df Ay Cip). (3.5)

The constants K, are independent of f and j, and are also independent of the
partition a for

0 =is, <= [k/2]. | v <l
For the other values of s they depend only on the mesh ratios in C; . .

Proof. Forxe(y, let

(TINY) = Y (DYxNy - x)a! (5.6)
Je] A
and
Ryf = f 1. (5.7)

From Lemma 4.1 we see that F,, reproduces the Taylor polynomial 7,/; t.e..
(F.T Y)Y (TN (5.8)

Therefore, the application of the differential operator D°, 's! <k, to the
spline F_ R f (for fixed x) gives

DF.R.f = DF.f — DE,T.f  DF.f~ DT.f. (5.9)

But
(DT f)Nx) DY (x); (5.10)

hence, we have the following representation of the error:

(D¥e)(x) = (D )x) — (DF,f)x) - —(D°F,R f)(x), xeC;.
(5.11)
Using (4.5b) we rewrite (5.11) as

(Dse)(x) - Z /\1{1( Rxf) DS/Vj%'l,k(x)

- =3 Y @ina DR )T 0) D3Ny (X)), (3.12)

T s
where x € C; and the sum is over all / satisfying

—k -1 <1 <0, I < v<n (5.13)
Expanding (D®R,f)(t,,,) in a Taylor series about x € C; and using

(DR f)x) =0,  [v] <k,
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we obtain

Nl R f)y = ) Y wyroDYPRENX — Ty )PBY (5.14)

la[<k |atB=F-1

where € = &(a, B, j, 1) is a point on the line joining x and <,. But for
la+B[=k—1,

(D*PR)E) = | DB (x) — DB ()] < wpa(fs 4y Cyp)-
(5.15)

Therefore, to complete the error estimates it suffices to show that there is
a constant K such that

| oma(X — 7)® DNy (%) < K AP (5.16)
forla+B|=k—1,xe(;, and
b—k+1<m <j, 1<v<n (5.17)

Note that (5.16) is clearly true for some constant K which depends only on
the mesh ratios in C; , . We shall now determine those values of s where K|
is actually independent of the mesh ratios. We first note that (5.16) is a
product

" . s
k—-1-u, |
1,11 \ wm,av.v[xu - Tm,v] (?XVSV Nm,,,]c(xv)w (518)

Moreover, the analysis given in Section 3, in particular Lemmas 3.1 and 3.2,
applies to each term in the product (5.18). Observe that =, ,, | << v <n,
satisfies (3.16) if =, is chosen by the rule (4.6) and (4.7). We conclude that
each term in (5.18) is bounded by

Ks,,A ljc;lfs,,’
for I <v <n where K, is independent of the mesh ratios for
<'s, < [k/2]); consequently (5.16) holds with

K= T K,
v=1

and K is independent of the mesh ratios for 0 <C's, << [k/2], 1 < v < n.
Since the constant K is independent of j, the global error estimate

| D% ||z < Ko [mi 1Bl o (fs |75 £2,), (5.19)
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where

and the union is over all j such that C; " £ == = follows immediately
from (5.3). Sharper estimates can be obtained if we assume that £ is locally
convex in the sense that each x € C; , can be “'seen” by the evaluation points
7;,, in the following sense.

DerintTiON 5.1, The region £ is said to be locally convex with respect
to the partition 7 and the evaluation points {r;} if for each j, C, " Q2 -
and for each [ satisfying (5.13), the line from 7 ; to any x € C; lies in £2.

We note that the class of locally convex regions in the sense of Definition 5.1
includes not only all convex regions but also nonconvex regions such as
rectangular polygons whose sides are parallel to the coordinate axes. However,
regions which have reentrant corners whose interior angles exceed 37,2 are
not locally convex; see, e.g., Fig. 1.

an

"
Q supp[NJ- , 3
FiGURE |

If 2 is locally convex, then the point & in (5.14) lies in £2. Hence (5.15) can
be rewritten

(D PRIE)N ol fi 4y Ci N L),

and we conclude that (5.19) holds with £ replacing £, . Morcover, we need
only assume /e C*1(£2) for this estimate.

Remark 1. The previous error estimates remain valid if the terms
D*f (ry). @i <k,

appearing in F,f are replaced with difference quotients with accuracy
O() 7 |*~'%!y. Unfortunately this substitution, while of great importance in
practice, will in general introduce mesh ratio dependence in the error D%
for all | s| < k. It remains an open question as to whether a discretization
can be found such that there is no mesh ratio dependence for say s = 0.
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Remark 2. If the function f is not in C*-1, a modified quasiinterpolant
can still be constructed. Specifically, let fe C*[2]for 0 -2 ¢ =~ k — |, and put

F o) = Z Z U)j.aDuf(Tj) Nig-

bty

Then the estimate (5.3) holds if & -- 1 is replaced with ¢.

In applications [4, 13} it is important to construct spline approximations
to functions f for which we only know that f'hies in the Sobolev space W *(£2);
i.c.,

I

f\r‘ll YD (5.20)

S

The major problem with the quasiinterpolant F,_f is that it may not even be
defined if the number of spatial dimensions # is too large; for example,
/= Inln(x;% + x,?) satisfies (5.20) with k& == 1 and r = 2, yet this function is
not bounded in any region containing the origin. We shall show, however,
that if the quasiinterpolant F_f is defined, then estimates similar to (5.19)
are valid in integral norms like (5.20).

To fix ideas let us suppose that the map F, contains ¢ derivatives. Thus, for

a strict partition ¢ = k — 1. and g = k — 2 if the evaluation points are
centered. For the Hermite approximation, on the other hand, k is an even
integer and ¢ = [k]/2 — 1. This is obtained from a strict partition by letting

[k]/2 — 1 successive nodes coalesce in each variable. To test whether F, is
defined on functions f satisfying (5.20) we use the Sobolevr embedding
theorem [15] which states that

sup sup | DFf(x): < oo,

[Bi=ia xeq

provided
k = mjr -+ q. (5.21)

Let us assume (5.21) holds, and let us study the error f— F.f in the
cube C,; ., which we rewrite as C to simplify notation. Qur analysis is
somewhat similar to the foregoing estimates, except that we no longer use
the Taylor polynomial 7 f associated with f. This requires more information
about fthan is provided by (5.20). To get an alternate polynomial which is
close to fin C, we use the change of scale trick now familiar in finite element
theory [13, 14]. In particular, consider the affine transformation of C onto
the unit cube Q == (0, 1). This is a dilatation with the ratio of volumes being
(1), where I is the diameter of C. Now, it is known [15] that if

| Flir o == ‘f}}l‘a}i DBE, . o < o0, (5.22)
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then there is a polynomial P of total degree at most & — 1 such that
V\F—=Plh,o= K Fi,o (5.23)

holds for some absolute constant K = 0. In fact, (5.23) states that (5.22)
is equivalent to the natural norm on the quotient space W YQ)/P, 4
(P;_, denoting the space of polynomials of total degree at most & - 1). Let F
be the image of f under the dilatation C — @ and let the polynomial p be the
inverse image of P. Then after a change of scale (5.23) becomes

=P e = K=ty o, C s 0=21/=g, (5.24)

where the constant K, depends on the mesh ratios. In fact, we shall be rather
crude and not keep track of the latter. Defining the residual by

R(x) = f(x) — p(x),
we have
F.f—f=F,R—R

since F, p = p. Thus,
L= flre s FR e + 0 Rllse (5.25)

The second term on the right of (5.25) is exactly (5.24) and, hence, is of
order ¢(h*-1). To estimate the first term we recall

DSF,R(x) = Y Ay, (R) DN (x).
1]
Now, by assumption, A, involves only derivatives up to order ¢ with the «th

derivative multiplied by a weight of order 4l*l (see (4.2) and (4.3)). Thus, with
(5.24) we conclude that

AR KR Lf e
Since DN, is of order A*~15!, we have
I ER e < KU flie
Summing over all C = C; ; gives the following.
THEOREM 5.2. Let (5.20) and (5.21) hold. Then
= FEf e < Kt flie,  0<ls=g, (5.26)

where K, is an absolute constant depending at most on the mesh ratios.
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6. NUMERICAL RESULTS

In this section we shall illustrate the accuracy of approximation by quasi-
interpolants with some specific examples. For simplicity we shall confine
attention to the cubic case (K = 4) with uniform partitions.

As a first example we consider the cubic spline approximation of

fx) = exp(x). (6.1)
in 0 =2 x < . Partition [0, 1] into intervals with mesh length /1, and let
x; = (f — 4)n, P j=o N T (6.2)

where N =- 1/h. The quasiinterpolant can be written

N-3 3

FA) Y Y w 7)) N () (6.3)

el =0

(see (2.4)—(2.6)). If the evaluation point 7, is centered in the support of N, ,,

Tj 7 Njia (6.4)
we have (see (3.5)f1))
] ity 0
0 it r =1 _
TN e i =2 (6.5)
0 if r—23

Forj= landj = N - 3. 7;¢[0, I]: hence, for these cases we modify the
foregoing by taking

o=y =00 Ty = o o L (6.6)
This gives
I if =0
—h if re=1
A N ST R (6.7)
0 if r=23
1 if r=20
- hi3 if r=1
ONsr TN g3 i =2 (6.8)
0 if r=3

Note that for # << x <1 — A,

Ff(x) = Y {f(xj0n) — (h36) fP(x; 0} Nj o). (6.9)
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As indicated in Section 5, the derivatives in (6.9) can be replaced with a
difference quotient having accuracy ¢(A); in particular this gives

Frr,lf(x) = Z {I8f (xj10) — Flxia) — flx)}/6} N 4(x), Xy on X =L Xnug,
J (6.10)

with suitable modifications for x in [0, 4] and [[ — /, 1]. For simplicity we
shall use (6.10) to define F,,f everywhere in 0 =i x = 1, thus explicitly
using values of f outside [0, 1] to compute values of F, ;f.

In Table 6.1 we shall compare the accuracies of (6.3) and (6.10) with the
accuracy of the spline interpolant

Fﬁ.:!f(x) = Z CjNi.al(X)’ (61 ])

TABLE 6.1

Errors in the Cubic Spline Quasiinterpolant,
Discretized Quasiinterpolant, and Interpolant of (6.13)
Notation: 1.2 — n means 1.2 < 10™?

Function values

h e o) o
1:4 0.156-3 0.298-3 0.263-4
1.8 0.103-4 0.190-4 0.169-4

116 0.663-6 0.122-5 0.107-6

Derivatives

h o ety o
1:4 0.416-3 0.538-3 0.321-3
1:8 0.479-4 0.562-4 0.409-4
1/16 0.554-5 0.609-5 0.512-6

which is defined by

(Frof)x) = fx), 4 =j<N+i4

(6.12)
(F, o) (x) = f(x)), j=4 and N+ 4.
In this table we shall let
e = max | /) — (£ )" @, (6.13)

for0 <1<2,0<r<landF,,=F,.
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As a second example we shall consider the spline bicubic approximation of

f(x, y) = exp(x, ), (6.14)

in the L-shaped region shown in Fig. 2.

y

1

(0,2)

(1,1)

A\‘ 4
x

(0,0) (2,0)
FiG. 2. L-shaped region.
The quasiinterpolant is defined by (4.5), where we take
= (jih = 2h, juh + 2h) = (Vh -2 ’}]o+2)

if’ the latter is in £; otherwise, we let t; be the boundary point closest to
(X522, i, +2)- If the point (x, y) € £2 is at least a distance & from ¢4,

Frof (6, 3) = 3 Af (x50 Vi) — B AFCxy e, Viyi0)/16) Nialx, ), (6.15)
with the discretized version being
Foaf (o p) = 2 A (50 Vigen) — 12 A0 f (Ni4a, V3,00 16} Ny, p),

A fle,y) = 1f(x 5 hy) + flx —hy) + [y - h) + f&x,y —h)

— 4f (x, y)l/h2 (6.16)

For simplicity we shall define F, | f everywhere in £ by (6.16) (thus, using
values of f outside £2). As in Table 6.1 we shall let

el == max | £(x, ) — Fraf(x, )

¥)eR
a _ of 4
ef) = max | Loy - Lo Fasn)|
Because of symmetry
(1)
e — max |- () — - Ff ),
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TABLE 6.2

Errors in the Bicubic Spline Quasiinterpolant
and Discretized Quasiinterpolant of (6.15)

Notation: [.2 - mmeans 1.2 - 10~
/’ c:!‘,’/: ¢ : l.'/" (,I\I .1/: (}: ’/:
14 0.196-1 0.275-1 0.604 -1 07871
I8 0.115-2 0.159-2 0402 2 0.481-2
116 0.708-4 0.977-4 02183 0.279.3
APPENDIX

Local Spline Approximation by Moments

Let & be a positive integer and let = - {x,1Y be a partition of the finite
interval [a, b], as in (3.1), augmented by suitable points. as in (3.2). Birkhoff’s
scheme of *-tocal spline approximation by moments™ [3] (as described in [5]
for even and odd k) approximates fe C%fa. h] by

(L)) ;fm('a)(.\f —ay'/rl + " ‘ OAx ) dFT Y (AL

Here, Q. is k-point central polynomial interpolation. In this scheme, a
function ¢ defined on [r_,, , fy.,,] 1S approximated on [a, ] by Q. g, where

(0. 9)(x) = pix) for xe[x; s X0

D bemg the polynomlal of degree < k which agrees with g at x, ..., x; ..
[ = —m,...,N — m, and

m = [k/2].
It follows that Q. g can be written in Lagrange form,

g = 28lx) Wi,

where, for each i, W, is the function on [a, b] determined, e.g., by

W(v)—QﬂH—

}#1,"‘¥xl
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With this, (A.1) can be written

(Pﬂf)(x) - Z f(’r)(a)('\ a) /}‘" + 1)' z (’C \) fb ”/1 df(lf——l)

(A.2)
THEOREM A. For all fe C'"Dla, b],

where F,f is the quasiinterpolant to f described in Section 3, with the +,'s given
by (3.5).

Proof. Since both P_ and F, reproduce polynomials of degree < k, it is
sufficient to prove {A.3) under the additional assumption

f™a) = 0, all r <k. (A4)
For such f,

l - R k17 1 T e lie—1
M e LT W0 = ey [

as we verify by repeated integration by parts. Hence,

(k= DIF,f = ZJ gy df N, (A.5)

On the other hand, with (A.2) and (A.4),
~b
tk — D P f= Z (x —x)1! , W, df(k—l)

By (2.17),
(x —x; :ﬁil = Z l/‘;*(«“i) N; (%),

where we can take

Pite) = (X — x4 o (x — Xjrp—1)e

Hence,

(k= D! Pf =T Y g ) [ Wodf SN, 0

= Y A() N
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with

A S W

N
. ’ in;[(,;i df‘(/. l).

By (A.5), it, therefore, suffices to show that

‘-h Qni/ljl df(/" Y - ‘

*

gt (A.6)
But this can be seen as follows. We have

ey V). for 7.1/ k
) =g, for i - j

Therefore. if p, is the polynomial of degree o & which agrees with o, at
X;eewn X; . - then

p, = vl for @ - j
o0, for i .

But this implies, using the definition of @, , that
(Qnth; NX) = x)xp, 0 - 30
which, with the Definition (3.5) of =, , gives (A.6). Q.E.D.
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