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I. INTRODUCTION

Let Q be a region in R", 7T a rectangular partition of R", and S"k (k ~ 1)
the corresponding spline space of degree k - I. In this paper we shall
explicitly construct for each function fE Ck(Q)l a spline FTrfE STrk, which
we call the quasiinterpolant off, having the following properties:

(i) FJis local in the sense that its value at a point x depends only on
the values off in a uniformly small neighborhood of x.

(ii) FTr reproduces polynomials; FTr(xY ) = x Y for! y I < k.

(iii) FTrf - f = 0(17Tl k').

Moreover, our quasiinterpolant has the rather simple form

Fnf(x) = I I Wj,~D"f(Tj) Nj,I,lx),
j l",<k

(1.1)

where N i .k is the n-dimensional B-spline, Tj is an arbitrary point in the
support of Nj,k , and the weights Wj,a are given by (2.6) for n = 1 and by (4.3)
for n > 1.

The literature on direct constructions of spline approximations like (1.1)
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appears to be the following. In [3] Birkhoff has defined a scheme of spline
approximation by moments (n -. I) of the form

p,J- p(x) + I)J \I'/(t)jb")(t)dt( G(x. x,). (1.2)

Xi appears

where p is a polynomial of degree 2/1/ - I and G(x, y) is a suitable Green's
function. In the Appendix, we shall show that (1.1) in one dimension and (1.2)
are in fact equivalent, and, hence, our quasiinterpolant provides an algebraic
simplification of Birkhoff's scheme in this case. Using the Fourier transform
Babuska [2], Strang and Fix [8, 13] have constructed approximations
analogous to (1.1) for uniform meshes. Finally, in [4] de Boor proved the
existence of projectors like Fir in (1.1). This work was subsequently generalized
to n dimensions by Schultz [12] through the usc of tensor products.

We note that it is straightforward to extend our construction to Chebyshev
splines.

2. THE QUASIINTERPOLANT

Let k be a positive integer. We say that Jr., {x,};'c.' is a k-extended
partition for the open (finite or infinite) interval I (a, b) provided

(i) Xi Xi ,1' all i,

(ii) lim, ._Y. Xi c. a, lim i f Xi b.

(iii) if di is the frequency with which the number X

among the Xi's. then d, k, all i.

With Jr a I,-extended partition for (a. b). let C~I 1) denote the linear space
of all functions defined on (a. b) with the following properties:

(i) fE CU, 11(.Xi' x/+1), all i:

(ii) for all i and all r < k,jII)(Xi),jlil(Xi ) exist (and are finite); and

(iii) for all i, j!iI(X,_) = fU)(Xi i), all r < k - d i . The following
agreements will be convenient: If the function f has a jump discontinuity at
X = g, thenjW stands for either j(r-'r-) or j(g-). Further, the statement.

stands for the two statements

and

We denote by S/' the linear subspace of C~k-l) consisting of all polynomial
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splines on 1T of order k (or, degree < k). Specifically,fE C;/~!I is in S,/, if and
only if

for all x ¢ 1T.

According to Curry and Schoenberg [6], the set of normalized B-splines on 1T,

with

Ni.1.·(X) == (Xi i k" X,) g,.(Xi ..... Xi I. ; X). all i, (2.1 )

gl.·(S: .Y) == (.I ~- xy"!
\ (.I' .. , x)I.·1,

10,
s x
s x

(2.2)

forms a basis for S/ in the following sense. EveryfE S,/, can be written in the
form

f= I a,(f) N,.I

for exactly one biinfinite sequence (ai( f)) of coefficients. Here, the biinfinite
sum is to be formed pointwise, i.e.,

(I a;(f) Ni./.O) (x)== I ai(f) Ni.l.(x),
\{, 1-

all x E (a, b). (2.3)

The right side of (2.3) is well defined since no more than k of the N i . l• are not
zero at any particular x.

For[E C:/~!). we define an approximation FJto[in S,/' by

Fe)' --= I (AJ) N i ./· ,

where. for each j. Aj is the linear functional given by the rule

with

(2.4 )

(2.5)

Wj,} = (~I)IH-' if;;r,h)(T;)/(k - I)l.

<fJj(x) == (XiI .. X) ... (Xik~! -- x),

r k.
(2.6)

and Tj some point in (a, b). Should Tj be one of the points of 1T, then Tj in (2.5)
is to be replaced by Tj+ or by Ti~' [n the few cases where it matters which
choice is taken, we will say so.

The motivation for this somewhat complicated definition is twofold. For
one, F" can be shown to reproduce polynomials, i.e., F"p= p, for all
polynomials p of degree < k. Also, if, in particular. Tj E (Xj , Xi+lc), all j, then
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FJ is a local approximation to f in the sense that F,J on (Xi' Xi+l) depends
only on the behavior offon (Xi_, 1--" , Xi+")' This is due to the fact that Nuc has
its support in (Xj , Xi+/J, all j. These two facts are combined in Section 3 to
show that, for X EO (Xi' Xi+!) and fE: 0"-1),

[U -- F,J)(x)i

(2.7)

with K an absolute constant. In addition, one obtains corresponding estimates
for the degree of approximation to j<r) by (F,J)(rl, r < k.

LEMMA 2.1. Let -\ be gh'en by (2.5) and (2.6). If x is any point and p is
a positive integer no bigger than k, then

(k -- p)!_ (_ W 1 lJ;;"1)(x).
(k -- I)!

(2.8)

Proof We have

(k - I)! \ .(. _ )"-1'
(k _ p)! 1\) x

C~ I lJ;;'\T;)(--I)' [(b/cs)H-r (s -- xl-"/(k-- p)!] lB~rj
r<:-.k

"-·1

I. if;;r)(T;)(-I)' (T; _.- xy--P"l/(r -- p '.. 1)!
r;:c~l)-l

/;"11

I if;;H-1)(T;)(-I)"'p-l (T/ --,)'/s!
,<:=0

k·l1

cc (_1)",1 I. (if;;v-t»)C,) (T;)(X TJ'/S!
8=0

= (_ 1)",1 1J;lJ.l)(X).

since if;~"-1) is a polynomial of degree k -' p.

COROLLARY. Under the same assumptions.

\ .(. _ ')"-]) = (k -- er.. (_I)"-t ,1.(,,'1)(X)( -- x)o . (2.9)
1\] .X -+ (k __ I)! '/'J - T)

Proof If Tj "'~ X-, then both sides of (2.9) are trivially zero; hence, (2.9)
holds in this case. If Tj '): x+ , then

\(. - x)~·" = Ak -- x)"-",

and (2.9) follows from the lemma.
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THEOREM 2.1. Let.:\; be gil'en by (2.5) alld (2.6). If

(hell

AiN,.I, = 3'j . all i.

Proof By the corollary to Lemma 2.1.

with

Further,

hence, from (2.1) and (2.11),

23

(2.10)

(2.11 )

(2.12)

Since !J;j vanishes at Xic1 , .... X, -/,-1' and !J;i~ vanishes for x > Ti' it foHows,
with (2.10), that

for all r j.

Therefore, for i j.

!J;i (x, .... , Xi-e/,) 0,

or, with (2.12).

Ai Ni ,1. = 0, for j.

If i < j, then !J;j' agrees with {/ii at Xi .... , Xi~I,' ; since !J;i is a polynomial of
degree < k, we. therefore, have

¥Jj'(Xi , ... , Xj~IJ = !J;i(Xi ..... Xi I") c= 0,

or. with (2.12),

AjNi .k == 0, for i < j.

Finally, if i= J. then !J;i + agrees with the kth degree polynomial

at X, .... , x" If ; therefore,
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or with (2.12)
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\Ni,l: I, for j,

proving the theorem.

Remark. The fact that the set of normalized B-splines (2,1) is a basis for
S7/' is a rather easy consequence of this theorem, as is the statement that the
set

Ni,k,,··,Ni-+/,.I:,

is linearly independent, considered as a set of functions on

COROLLARY 1. If Jar all j, Tj satisfies (2.10), then F, as defined by
(2.4)-(2.6) is a linear projector with range S,/'o

Proof F", is, off hand, a linear map on C;/,~l) with range in 5/. Hence,
it suffices to show that

But, if/ES/', then by [6J

for all fE 57/,
(2.13)

for certain coefficients aiU). Since each Aj is a local linear functional, it
follows that

AJ c Aj (I aiU) Ni,I') =7 I (/iU)(AjNi.I:)·
,l ,I,

Hence, by Theorem 2.1,

all j, (2.14)

proving (2.13).
We mention a few obvious but noteworthy consequences of the preceding

results.
Since

for p :c::: k,

we get, with (2.8), from the preceding corollary that

( ',._ ,,)"J) = (k ._- pl!. '\' (_1)>>--1 ,',<f1~1)(v) N. (\,) (') 15)
.\., (k-I)!L. 'PI" ),/;" ~.

j
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which is Marsden's identity [9] in one of its many equivalent forms. But since
(2.8) holds for arbitrary Tj , we then get from (2.15) the following.

COROLLARY 2. If F" is given by (2.4)-(2.6), then

F"p = p, for all polynomials p of degree < k. (2.16)

Again, since gd'; x;) E S/ for any i, Corollary I to Theorem 2.]: and (2.9)
imply that

(2.17)

which can, of course, also be derived directly from (2.15).
Note further that (2.14) offers a convenient way to calculate the coordinate

vector (alf)) forf E S/ with respect to the normalized B-spline basis, once the
numberspfl(Ti)' r < k, all j, are known. In practice, we would make use of
the fact that the restriction (2.10) allows several of the T;'S to coincide making
it possible to calculate k of the coefficients aj(j) from the k pieces of data
f(fJ(Tj), r < k. Incidentally, if Tj = Xi for some i, then only Prl(Tj), r k - I,
are needed for the calculation of all) c= AJ; since then the coefficient
Wj.k-1 =, <f;j(TJ of f(l,~II(TJ in (2.5) vanishes.

3. THE QUASIINTERPOLANT ON A FINITE PARTITION

Since the quasiinterpolant FJ to f provides a local approximation, it is
readily adapted to the practically important problem of constructing
approximations by polynomial splines on a finite partition.

Let k be a positive integer, and let 7T ,~ {Xi}~ be a k-extended partition
for the finite interval [a, h]. Specifically,

X N - 1 < XiV c= b, (3.1)

with coincidences among the x/s restricted to no more than k consecutive of
them, i.e.,

Xj < Xjt k , all j.

If S" k denotes the linear space of all polynomial splines of order k on 7T, then

{Nj,i, U c= ~k + I, ... , N - I},

is a basis for S"k. Here we have augmented 7T by additional, rather arbitrary
points

(3.2)
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For fE C~I,ll, we define F,.J, as before, by

F,J
S]

I (Ad) N i ,!·

»-f,' l

(3.3)

with I\, given by (2.5H2.6) and TJ satisfying (2.10) as well as the additional
restriction that

Tj E [a, b), all j. (3.4)

Note that this additional restriction is compatible with (2.10).
Typically, we might choose

where

j
o
N

k;2
j
j

O.
k/2
k!'")

i - ~

lV'. (3.5)

With this choice, we get, for 0 j kj2 N.

Aj (

k
k
k
k

I,

2.
3.
4.

to give some explicit formulas.
It readily follows from Theorem 2.1 that the map F.. is a linear projector

with range S,/,. In preparation for later sections. we now consider the error

e 'C. f- F,J

For simplicity, we assume that 7T is a strict partition. i.e ..

Xi < Xi'! • all i.

We also assume thatfE CU,-lI[a, b]. For x E [a, b]. let

(Txf)(s) = I 1('\x)(1 x)'/r~
'1"</.

and
RJ =1 - T,l

Then, T.J is a polynomial of degree < k; hence, as F" reproduces such
polynomials (see Corollary 2 to Theorem 2.1) we get
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On the other hand,
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for all r < k;

therefore,

or

r < k,

r < k. (3.6 )

Hence, estimating e1rl(X) amounts to bounding the k terms

for which Nj.k(x) is nonzero. This can be done as follows.
Since R~)(x) = 0 for p < k, expansion of R~l in a partial Taylor series

around x gives

R~:\y) = R~H)(O(y - x)/r-l-r/(k - I - r)!

== ({\i.e -1)(0 - f(k-1)(X))(y - X)k-l-r/(k - I - r)!.

for some t = Kv, r) between y and x. With this, the definition (2.5)-(2.6) of
Ai implies

\Rx == L w e.UU'-l\te) - /k-I)(X)](Ti - x)k-I-e/(k - I - p)!.
e', /;

Therefore, with

A I' ( .) _. : ( )e N(r)( -)1/ 'e,/'\ .- I WAc-I-e.i Tj - X j,le X p.,

we get

!(\ R ) N(r)(' -)I,~ (l u'-I) I I) " A" ( )
I I\j ,1: J.k X : --~ w _ , i Tj - x 1..J - (J,j ,x ,

e<k

(3.7)

(3.8)

where w(g, .) denotes the modulus of continuity of g.
It remains to find suitable bounds for the quantities A;)x). With (2.6),

we have, more explicitly,

where

l/Jlx) = (XJ+I - x) ... (Xj+k-I - x).
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this gives at once
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Xj Ti, X X);. '

(3.9)

where Ko is some constant depending only on P and where

J j max (x, ]
j.- .1, .,' "i/·I.

Xi). (3.10)

For r O. a more careful analysis is required to establish In which cases
A;./x) can be bounded independently of the local mesh ratio.

First, using the facts that

V(I'+-l)( .)
1 1,//1 .x_

\
'(r)

i 'i iLl" I(X)
- -----_ ... -.. ------------

Xi Xi I

and that 0 I, one can prove by induction the following.

LrMMA 3.1. For r < k, there exist a constam e
n ee,c n(k, r.j. x) such that

e(k, r) alld aI/ il/teger

with

N (r)( )'
j.k X i

X, x Xu ;_/~ __ I'

Xii)' .

X, ,. (3.11 )

Further,

1.(0)( .) I ,
Ifj S Ip. -;~ I n (IT sl.

I 0':'1
jJ /-'

where the sum is taken over all subsets I" of X , __ ] ..... x, 'I of cardinality
kip. Hence. with C1 ~- CI(k. r. p) somc constant.

(3.12)

Since both Tj and x are in [Xi. Xj-t-kJ. this gives

(3.13)

where the constant C;,j may depend on the local mesh ratio.
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LEMMA 3.2. II 21' k,and

(3.14)

then [he constant C;,j in (3.13) can be chosen independently of Ti .

Proof. By (3.12), the task of bounding A;jx) amounts to bounding p!
terms of the form

(3.15)

where
p times

J= I" u {x, ... , X;.

We claim that at least k -- I' elements of J lie between X n and X n +/;_,. Indeed,
since at least k I' of {Xj +-1,"" x j '- I,-l} lie in [xn ' Xn+k-r], and I" contains
k I - P of the /.: - I points {Xj! 1 , ... , Xii 1.--1], it follows that

#{Xi e Tp 1 X n Xi X"tf-,} k ~ 1 - p +- k - r·- (k - 1)= k. ._- I' - p,

where. by (3.11), the p x's all lie in [x" ' x n I /;_,]. It follows that at kast k - r
of the k - I factors.

are less than or equal to X" 1.-,- Xli . Therefore, if r k - r, then all terms
in the denominator of (3.15) can be cancelled against suitable terms in the
numerator without increasing the value of the expression, which proves the
lemma.

It remains to discuss the condition (3.14) which should be satisfied if we
are to get bounds (for 2r k) which do not depend on 7T. Since Lemma 3.1

gives no information about 11 beyond the condition (3. I I), we must choose Tj

so as to satisfy (3.14) for alln satisfying (3.] ]). Hence, with

111 = [k/2].

we need to pick Tj so that

for all 17 such that

X n Tj .Xn+k--III ~

Xj Xj i.-'

if we want (3.14) to hold for all r :::;;, k/2. The choice.
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will accomplish this for all x E [Xj , Xj+J;]. But note that, for certainj, [Xj , Xje-k]

will not lie entirely in [a, b] = [xo , XN]' As we are only concerned with
x E [xo , XN], it is, therefore. sufficient to choose each Ti subject to

Xmax(;,O)+k-,,, (3.l6)

to have (3.Il) hold for all x E [a, b]. Specifically, the choice (3.5) satisfies
(3.16).

The preceding discussion proves the following.

THEOREM 2.1. JffE Clk-lJ[a, b], and En is giDen hy (3.1), (2.5), (2.6), and
(3.16), then

r <. k,

where, for r k12, Kr is independent of 7T (or 1), while, .tiJl· r > k12, Kr

depends on the local mesh ratio

Here

g .~ max I g(x)i.
u~ .• ·. cr~: b

4. THE MULTIVARIATE QUASIINTERPOLANT

In this section we extend the quasiinterpolant construction to include
functions of 11 variables. We use boldface type to denote points in Rn,

x = (Xl'"'' Xn)

with Xi the ith component of x. For each ]J = 1, ... ,11, let

be a k-extended partitIOn of R and set 7T 7Tl ~< ... 7T n . Thus. as
j = (jl , .•• , jrJ varies over zn, 7T can be characterized as the set of nodes Xj with

For j E Z" and x E Rn we let

(4. I)
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the B-spline of degree k- J (in each variable) which has the II-dimensional
interval or cube

as its support. Here we have used the abbreviation

1 = (1, ... , I).

Correspondingly, we define the linear functional Xj by the rule

Xd = L Wj,Il(DIlf)(T j ),

o'<Up/f.'

where T j is some point in the support of Nu and (see (2.5), (2.6))

"
Wj,U := nWj,Uv,l' ~

v,~l

(4.2)

k-1

1J,,)t) = n (X"H,,'- t).
i~l

Hence, Xj is (an extension of) the tensor product @:'~l Xj,v with

Xj .l'g L wj".,(D"g)(Tj,,).
,1<:k

Therefore, by Theorem 2.1,

XiNu = °u = l~

This shows that the rule

if i j
if i + j.

E,J = L (Xd) Nj,k

jEZn

(4.4)

(with the sum taken pointwise as in the univariate case) defines a linear
projector E" on the linear space of functions f in Rn which have k - I
continuous derivatives in each variable. 2 The map ETI enjoys all the properties
possessed by one-dimensional quasiinterpolants; it is projective into its
range S"k; it is local; it approximates to the correct order. However, it has the

, We shall denote this class of functions by Ck- l , or C' -l(Q) if the dependence on the
region Q is important.
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disadvantage of being defined only on W::,U-l), while in practice it is important
to work with the larger Sobolev space W~'-l.a

By simply omitting in (4.2) all terms (Duf)(1: j ) with a. k, we obtain
the map

with

F,..f = " (,1./') N· ,.
d. f-J .1. J, ,

Ad I Wj,u(DUl)(T j ).

lul'·,1."

(4.5a)

(4.5b)

F.7 maps all of W~-l n C,·-l into S,/, but fails to be a linear projector, although
it is local and, more importantly, PrJ approximates f to the correct order.
This latter point will be verified systematically in Section 5; however, it seems
appropriate to give an intuitive justification here. The key lies in the nature
of the multivariate Taylor expansion

TJ(y) I (DUl)(x)(y - x)U!a.!.
u:·j,

The error estimate in Section 3 centered around the ability of Fo; to reproduce
this Taylor polynomial which, In turn, requires that F., reproduce the
monomials

Since ST/' contains the larger set of monomials

a.,. < k. all v,

and P" is a linear projector with S/, as its range, it follows that PIT reproduces
yU for I a. : < k. But, whenever fey) = yU with i a. ! < k, then DPf" 0 for

(3 ! k. Hence, since '\j is obtained from Xj by omitting all terms DPf
with : (3 k, then

\f= AJ

Therefore, finally, FJ PJ = f This proves the following lemma.

LEMMA 4.1. With PIT and F" defined by (4.4) and (4.5), respectively,

F"p = F.-rP = p,

for all polynomials p of total degree < k.

3 We shall denote by w~m the class of functions f whose derivatives up to order fIl are
bounded; i.e., sup" ! DUf(x)' w for (X (Xl + ... + (X" < fIl.
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If I is defined only in a region Q eRn, then it is possible to define F"j
using only the values ofI and its derivatives in Q. Clearly this will be the case
if 't j is chosen to be any point in

However, further conditiens are needed on the choice of the evaluation
points 't j to prevent unnecessary dependence of the error estimates on mesh
ratios (see Section 3). Accordingly, we shall assume in the sequel that the 'tj's
have been centered in the support of Nj,i" except near 8Q, in the following
manner. With

k' = [kI2],

put

with j' chosen so that

(4.6)

I j + k'l - j' I ~ I j + k'l - m I for all m with X m E Q. (4.7)

5. ERROR ESTIMATES

In this section we shall work with a partition 7T of Rn consisting of distinct
nodes Xj, j E Zn. Having established error estimates for such partitions and
having determined when these estimates depend on mesh ratios, we can then
let nodal points coalesce to obtain the k-extended partition setting.

Let Q be a region in Rn. For each IE W~-l(Q) (\ Ck-l(Q), we define Frrl
by (4.5a) and (4.5b) with the evaluation points 'tj being chosen according to
(4.6) and (4.7). Our first result is a local estimate of the error in the interval

(5.1)

in terms of values ofI in

(5.2)

THEOREM 5.1. Let (Xj , Xi+!) (\ Q cL .0, and let IE Ck-l(Q (\ CLk)' Then
for 1 s I < k

where

I D s ( )1 ~ K ~k-l-!sl (f' A • C )max e x ~ siJ 1 W k-l ,iJ j, 1 k ,
XEC

j
.•

(5.3)

(5.4)
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max w(D'j; Ll J• ; CJ· ).).
',A-I' "

(5.5)

The constants K, are independent of) and j, and are also independent of the
partition 7T for

o Sv [kj2], l' n.

For the other values of s they depend only on the mesh ratios in CLk '

Proof For x E C i , let

(TJ)(y) I (f)U/)(x)(y x)Ujcx!
Iu[ /.

and

RJ f TJ

(5.6)

(5.7)

From Lemma 4.1 we see that F~ reproduces the Taylor polynomial TJ; i.e.,

(F,1xf)(y) (TJ)(y). (5.8)

Therefore, the application of the differential operator DS
, S < k, to the

spline F"Rxf (for fixed x) gives

D'F"RJ= D'FJ- DSF,JJ D'FJ DSTJ (5.9)

But
(D'TJ)(x) D'!(x);

hence, we have the following representation of the error:

(5.10)

(D'e)(x) = (D'f)(x)- (D'F"f)(x) -- (D'F" RJ)(x), X E Cj •

(5.11)

Using (4.5b) we rewrite (5.11) as

(D'e)(x) =- I Aj+I(RJ) D'Nj+l,{cCx )
I

= - I I Will.u(DURJ)(Tl+I) D'NHl.k(X), (5.12)
I letl<1:

where x E C j and the sum is over all I satisfying

v ~( n. (5.13)

Expanding (DU RJ)(Tl+l) in a Taylor series about x E C j and using

(DYRxf)(x) = 0, I yl <k,
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Aj+l(Rxf) = I I wj+l,u(DU+PRxf)('f,,)(x - 't'H-l)P/[3!, (5.14)
lul<k lu+PI~k~l

where 'f" = 'f,,(a, [3, j, 1) is a point on the line joining x and 't" j' But for
I a + [3 I = k - 1,

!(DuHRxf)('f,,)[ = [ Du+Pj(x) - Du+Pj ('f,,) [ ~ wk-l(f; Ll j ; CLk)'

(5.15)

Therefore, to complete the error estimates it suffices to show that there is
a constant Ks such that

1 ( )p DSN ()[ <" K Ak-l-isl
IWm,uX-~Tm m,k x "" s"-lJ ,

for I a + [3 I = k - 1, x E C j , and

(5.16)

jv - k + 1 ~ mv L , 1 ~ v ~ n. (5.17)

Note that (5.16) is clearly true for some constant Ks which depends only on
the mesh ratios in Cj,k . We shall now determine those values of s where K s

is actually independent of the mesh ratios. We first note that (5.16) is a
product

(5.18)

Moreover, the analysis given in Section 3, in particular Lemmas 3.1 and 3.2,
applies to each term in the product (5.18). Observe that T m,v' 1 v ~ n,
satisfies (3.16) if 't'm is chosen by the rule (4.6) and (4.7). We conclude that
each term in (5.18) is bounded by

for 1 ~ v ~ n, where Ks is independent of the mesh ratios for
o 'S; Sv ~ [kI2]; consequently (5.16) holds with

n

Ks n K sv '
v=l

and K s is independent of the mesh ratios for 0 ~ Sv ~ [kI2], 1 ~ v ~ n.
Since the constant Ks is independent of j, the global error estimate

(5.19)
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and the union is over all j such that C j n f2 = follows immediately
from (5.3). Sharper estimates can be obtained if we assume that Q is locally
convex in the sense that each x E C j •1 can be "seen" by the evaluation points
't'j i / in the following sense.

DEFINITION 5.1. The region Q is said to be locally convex with respect
to the partition 7T and the evaluation points {'t'j) if for each j, C j n Q .
and for each I satisfying (5.] 3), the line from 'j _/ to any x E C j lies in Q.

We note that the class oflocally convex regions in the sense of Definition 5.1
includes not only all convex regions but also nonconvex regions such as
rectangular polygons whose sides are parallel to the coordinate axes. However,
regions which have reentrant corners whose interior angles exceed 37T/2 are
not locally convex; see, e.g., Fig. 1.

<lit

FIGURE I

If Q is locally convex, then the point S in (5.14) lies in Q. Hence (5.IS) can
be rewritten

and we conclude that (5.19) holds with Q replacing Q". Moreover, we need
only assume f E Ck-l(Q) for this estimate.

Remark I. The previous error estimates remain valid if the terms

CL k.

appearing in F,,f are replaced with difference quotients with accuracy
(17(1 7T I'Hal). Unfortunately this substitution, while of great importance in
practice, will in general introduce mesh ratio dependence in the error DSe
for all I s I < k. It remains an open question as to whether a discretization
can be found such that there is no mesh ratio dependence for say s O.
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Remark 2. If the function f is not in C" 1, a modified quasi interpolant
can still be constructed. Specifically, letfE C'/[Q] forO . q k-- L and put

Fr.,,,f c_~ I I Wj,aDaj'(T j) NUi .

j :ul

Then the estimate (5.3) holds if k -- I is replaced with q.
In applications [4,13] it is important to construct spline approximations

to functionsj'for which we only know thatflies in the Sobolev space W/,(Q);
I.e..

j '• \ I' " . u· ,. / I11
. lI.,1,0 =) LID .f(x): (XI

\'!J lal .
CfJ. (S.20)

The major problem with the quasiinterpolant f-J is that it may not even be
defined if the number of spatial dimensions n is too large; for example,
f = In In(x1

2 x~~) satisfies (5.20) with k c= I and r = 2, yet this function is
not bounded in any region containing the origin. We shall show, however,
that if the quasiinterpolant FJ is defined. then estimates similar to (5,19)
are valid in integral norms like (5.20),

To fix ideas let us suppose that the map F" contains q derivatives. Thus, for
a strict partition q == k - I. and q = k - 2 if the evaluation points are
centered. For the Hermite approximation, on the other hand, k is an even
integer and q = [k ]/2 - I. This is obtained from a strict partition by letting
[k ]/2- I successive nodes coalesce in each variable. To test whether F-rr is
defined on functions f satisfying (5.20) we use the Saba/ev embedding
thearern [15] which states that

SLIp sup i D~j'(x) < XJ,
[ J}: .-~~ {I XE: S-J

provided

k > m!r q. (5.21)

Let LIS assume (5.21) holds, and let us study the error f - f-J in the
cube Cue, which we rewrite as C to simplify notation. Our analysis is
somewhat similar to the foregoing estimates, except that we no longer use
the Taylor polynomial Txfassociated withf This requires more information
about! than is provided by (5.20). To get an alternate polynomial which is
close to f in C, we use the change of scale trick now familiar in finite element
theory [13, 14]. In particular, consider the affine transformation of C onto
the unit cube Q = (0, 1). This is a dilatation with the ratio of volumes being
(r(h"), where 17 is the diameter of C. Now, it is known [15] that if

I F II ,. (J ccc max I' DPF
" • . IPIA () <: CfJ, (5.22)
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then there is a polynomial P of total degree at most k - I such that

,iF --- P ,Q K FI:,r.Q (5.23)

holds for some absolute constant K O. In fact, (5.23) states that (5.22)
is equivalent to the natural norm on the quotient space W;-l(Q)/P"~l

(Pk - 1 denoting the space of polynomials of total degree at most k I). Let F
be the image of/under the dilatation C~~ Q and let the polynomial p be the
inverse image of P. Then after a change of scale (5.23) becomes

,!f-p Xz/1',-1 If l:,r,C , o q, (5,24)

where the constant Xl depends on the mesh ratios. In fact, we shall be rather
crude and not keep track of the latter. Defining the residual by

R(x) = f(x) - p(x),

we have

FJ- f= F:-,R - R

since F"p = p. Thus,

F"f - flll,r,C FITR I'!,r,c +- ,: R l,r,C' (5.25)

The second term on the right of (5.25) is exactly (5.24) and, hence, is of
order (!J(h"-l). To estimate the first term we recall

D'FITR(x) = LAj+/(R) DSNj,/(x).
/

Now, by assumption, Ajd involves only derivatives up to order q with the :xth
derivative multiplied by a weight of order hl~1 (see (4.2) and (4.3)). Thus, with
(5.24) we conclude that

Since DSNi+/ is of order h k - ISI , we have

Summing over all C = Cj,1e gives the following.

THEOREM 5.2. Let (5.20) and (5.21) hold. Then

U - FIT/III.T.ri 'S; K z 117,"- Z f o I q, (5.26)

where Xl is an absolute constant depending at most on the mesh ratios_
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In this section we shall illustrate the accuracy of approximation by quasi
interpoIants with some specific examples. For simplicity we shall confine
attention to the cubic case (k ~c 4) with uniform partitions.

As a first example we consider the cubic spline approximation of

in 0 x

f (x) = exp(x),

I. Partition [0, I] into intervals with mesh length h, and let

(6.1 )

:...., = (j - 4)h, j N! 7, (6.2)

where N =- 1/11. The quasiinterpolant can be written

F-J(x) (6.3)

(see (2.4)-(2.6)). If the evaluation point Tj is centered in the support of N i .4 ,

Tj Xj ~ " (6.4)
we have (see (3.5)11'.)

1 if r 0
0 if r -- I

(6.5)Wj,l -{z2j6 if r 2'--

0 if r 3

For.i = I and j N 3. Tj ri [0, I]: hence, for these cases we modify the
foregoing by taking

This gives
l. (6.6)

1 if r 0
-11 if r I

(6.7)Wl,r --

h2 j3 if 2
,

r =
0 if r -- 3

I if r = 0
hl3 if r -- I

(6.8)WN-;-3,r --
-h~/3 if 2r =

0 if r -- 3

Note that for h "S; x < 1 - 11,
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As indicated in Section 5, the derivatives in (6.9) can be replaced with a
difference quotient having accuracy l!J(h2

); in particular this gives

X XNf3'

(6.10)

with suitable modifications for x in [0, h] and [1-- 17, I]. For simplicity we
shall use (6.10) to define FTC.If everywhere in ° x 1, thus explicitly
using values off outside [0, I] to compute values of FTC.d

In Table 6.1 we shall compare the accuracies of (6.3) and (6.10) with the
accuracy of the spline interpolant

(6.11 )

TABLE 6.1

Errors in the Cubic Spline Quasiinterpolant,
Discretized Quasiinterpolant, and Interpolant of (6.13)

Notation: 1.2- n means 1.2 ;, 10"

Function values

h

1/4
18
1,16

h

14
\18
\116

which is defined by

0.156-3
0.103--4
0.663-6

ell)
O,h

0.416--3
0.479-4
0.554-5

0.298-3
0.190-4
0.122-5

Derivatives
e fl )

1.11

0.538-3
0.562--4
0.609-5

(,un
'!.,h

O.26J-4
0.169--4
0.107-6

0.321-3
0.409-4
0.512--6

j = 4 and N + 4.

(FTC.d)(x;) = f(Xj),

(FTC.dY (Xj) = .f'(x;),

In this table we shall let

4 j N 4
(6.12)

(6.13)

for a ~ I "--:; 2, a ~ r I and F7T • o = FTC'
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As a second example we shall consider the spline bicubic approximation of

f(x, y) = exp(x, y),

in the L-shaped region shown in Fig. 2.

y

(0 ,2)

(1,1)

L- -L. ~, X

(0,0) (2,0)
FIG. 2. L-shaped region.

The quasiinterpolant is defined by (4.5), where we take

"t"j = (j/l + 21z, i21z -+- 21z) = (Xh2 'Yi,+2),

(6.14)

if the latter is in Q; otherwise, we let "t"j be the boundary point closest to
(Xj,C2 , Yj 2+ 2)' If the point (x, y) EO Q is at least a distance Iz from cQ,

FIr.of(x, y) = L {f(Xj,12' Yi 2 12) - 1z2 L1f(xh+2' Yi,+2)/16} Nj,4(X, y), (6.15)

with the discretized version being

Frr,I.!(x, y) = L {f(Xj[2' Yi,d - 1z2 L1,J(Xh+2' Yi 2-'-2)/16} Nj,4(X, y),

L1,J(x, y) = [f(x --;- Iz, y) -+- f(x - Iz, y) -+- f(x, y -+- Iz) -+- f(x, y - Iz)

- 4f(x, y)]jh2. (6.16)

For simplicity we shall define Frr.tf everywhere in Q by (6.16) (thus, using
values off outside Q). As in Table 6.1 we shall let

e~~], ~'c max I f(x, y) - Frr.d(x, y) ,
(X.Y)EQ

(1) I of 8 Ie l II = max -8 (x,y) - -8 F rr d(x,y) .
• (x ,Y)EQ X X "-

Because of symmetry

(1) I 8f 8 Ie/ II = max -r- (x, y) - -r- Frr d(x, y) .
• (X,Y)EQ oy oy'
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14
18
1 I()
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TABLE 6.2

Errors in the Binlbic Spline Quasiintnpolant
and Discretized QuasiinterpoJant of ((l.15)

Notation: 1.2 II means 1.2 10

e(O} ,111'.
('l

i
l.
1
10,'1 ( 1./'

0.196-1 0.2751 0.604 1
O.115~2 0.1592. OA02. ,

0.708-4 0.977 4 0.2.18 :<

ApPENDIX

O.787~ I

OA8!-2.
0279.j

Local Spline Approximation by Moments

Let k be a positive integer and let 7T {X,)i~ be a partition of the finite
interval [a, h], as in (3.1), augmented by suitable points. as in (3.2). Birkhoff's

scheme of "local spline approximation by moments" [3] (as described in [51
for even Clnd odd k) approximatesfE CU,1)[a, h] by

I f(r\a)(x- a)'/r!
1'<:1,

I '------- I O.(r
(k I)!.,,-'

.) t dt(/ I) (A.I)

Here, Q" is k-point central polynomial interpolation. In this scheme, a

function g defined on [t-m , t" HI] is approximated on [a, h] by Q"g, where

(Q"g)(x) = p;(x) for x E [XiI I, :2' Xi 1,:2)'

Pi being the polynomial of degree k which agrees with g at x, .... , Xi I-I ,

i = --m, ... , N - 111, and

mc~ [kI2].

It follows that Q" g can be written in Lagrange form,

Q"g C7 I g(x;) Wi .

where, for each i, Wi is the function on [a, h] determined, e.g., by
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With this, (A.I) can be written

f) ) - ~ j(")(. ). '- )rj 1 __I _ ~ ( _ _.)k-l fb Lll 'if (1.--1)
(P". (x - r'0" a (x a r. + (k _ I)! i;>'-:.m X Xl + (( rv l (

(A.2)

THEOREM A. For allfE C1k- 1l [a, b),

(A.3)

where F"f is the quasiinterpolant to f described in Section 3, with the Tj'S giren
by (3.5).

Proof Since both P" and F" reproduce polynomials of degree k, it is
sufficient to prove (A.3) under the additional assumption

For such I,

jlf)(a) = 0, all r < k. (A.4)

ilI= ~_I-_ L (-Ytf;(r)(T)f(k-l-r)(T) = 1 fT! tf; I{U'-ll
J. (k - I)! r<k J} • J (k - I)! a J (

as we verify by repeated integration by parts. Hence,

(k - 1)1 FJ = L fi tf;j df(k-l) Nj,k

j a

On the other hand, with (A.2) and (A.4),

.b
(k - I)l PJ = L (x - "y;)~-l I Wi df(k-l)

i "'f/,

By (2.17),

where we can take

Hence,

(k - 1)1 P"f = L L ¥J/(Xi) f Wi dj(k-l) Nj,k

I J

(A.5)
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with

Ai(f)
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,,,
j I .pj(X;) ~V, diU I !

(/ l

(' Q".p, d/u II
" 0

By (A.S), it. therefore, suffices to show that

./,I QAJ/ ((/(;, I)
.. (/

But this can be seen as follows. We have

... ,/

(A.6)

for
for

J k
j.

Therefore. if Pi is the polynomial of degree

Xi .... , X, ;, I . then
k which agrees with 'ii, at

\'iii,
Pi '""-

/0.
for
for

j

j.

But this implies, using the definition of Q" , that

(Q".pJ ")(x)

which, with the Definition (3.5) of Tj , gives (A.6).
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